
Argon2: the memory-hard function for password hashing and other

applications

Designers: Alex Biryukov, Daniel Dinu, and Dmitry Khovratovich
University of Luxembourg, Luxembourg

alex.biryukov@uni.lu, dumitru-daniel.dinu@uni.lu, khovratovich@gmail.com

https://www.cryptolux.org/index.php/Argon2

https://github.com/P-H-C/phc-winner-argon2

https://github.com/khovratovich/Argon2

Version 1.3 of Argon2: PHC release

August 8, 2016

Contents

1 Introduction 2

2 Definitions 3
2.1 Motivation . 3
2.2 Model for memory-hard functions . 4

3 Specification of Argon2 4
3.1 Inputs . 4
3.2 Operation . 5
3.3 Indexing . 6
3.4 Compression function G . 7

4 Features 8
4.1 Available features . 8
4.2 Possible future extensions . 9

5 Security analysis 9
5.1 Ranking tradeoff attack . 9
5.2 Memory optimization attack . 9
5.3 Attack on iterative compression function . 10
5.4 Security of Argon2 to generic attacks . 10
5.5 Security of Argon2 to ranking tradeoff attacks . 11
5.6 Security of Argon2i to generic tradeoff attacks on random graphs 12
5.7 Summary of tradeoff attacks . 12

6 Design rationale 12
6.1 Indexing function . 12
6.2 Implementing parallelism . 13
6.3 Compression function design . 15

6.3.1 Overview . 15
6.3.2 Design criteria . 15

6.4 User-controlled parameters . 16

7 Performance 16
7.1 x86 architecture . 16

8 Applications 16

1

https://www.cryptolux.org/index.php/Argon2
https://github.com/P-H-C/phc-winner-argon2
https://github.com/khovratovich/Argon2

9 Recommended parameters 17

10 Conclusion 17

A Permutation P 18

B Additional functionality 19

C Change log 20
C.1 v.1.3 . 20
C.2 v1.2.1 – February 1st, 2016 . 20
C.3 v1.2 – 21th June, 2015 . 20
C.4 v1.1 – 6th February, 2015 . 20

1 Introduction

Passwords, despite all their drawbacks, remain the primary form of authentication on various web-services.
Passwords are usually stored in a hashed form in a server’s database. These databases are quite often captured
by the adversaries, who then apply dictionary attacks since passwords tend to have low entropy. Protocol
designers use a number of tricks to mitigate these issues. Starting from the late 70’s, a password is hashed
together with a random salt value to prevent detection of identical passwords across different users and services.
The hash function computations, which became faster and faster due to Moore’s law have been called multiple
times to increase the cost of password trial for the attacker.

In the meanwhile, the password crackers migrated to new architectures, such as FPGAs, multiple-core GPUs
and dedicated ASIC modules, where the amortized cost of a multiple-iterated hash function is much lower. It
was quickly noted that these new environments are great when the computation is almost memoryless, but they
experience difficulties when operating on a large amount of memory. The defenders responded by designing
memory-hard functions, which require a large amount of memory to be computed, and impose computational
penalties if less memory is used. The password hashing scheme scrypt [16] is an instance of such function.

Memory-hard schemes also have other applications. They can be used for key derivation from low-entropy
sources. Memory-hard schemes are also welcome in cryptocurrency designs [14] if a creator wants to demotivate
the use of GPUs and ASICs for mining and promote the use of standard desktops.

Problems of existing schemes A trivial solution for password hashing is a keyed hash function such as
HMAC. If the protocol designer prefers hashing without secret keys to avoid all the problems with key generation,
storage, and update, then he has few alternatives: the generic mode PBKDF2, the Blowfish-based bcrypt, and
scrypt. Among those, only scrypt aims for high memory, but the existence of a trivial time-memory tradeoff [9]
allows compact implementations with the same energy cost.

Design of a memory-hard function proved to be a tough problem. Since early 80’s it has been known
that many cryptographic problems that seemingly require large memory actually allow for a time-memory
tradeoff [12], where the adversary can trade memory for time and do his job on fast hardware with low memory.
In application to password-hashing schemes, this means that the password crackers can still be implemented on
a dedicated hardware even though at some additional cost.

Another problem with the existing schemes is their complexity. The same scrypt calls a stack of subproce-
dures, whose design rationale has not been fully motivated (e.g, scrypt calls SMix, which calls ROMix, which
calls BlockMix, which calls Salsa20/8 etc.). It is hard to analyze and, moreover, hard to achieve confidence.
Finally, it is not flexible in separating time and memory costs. At the same time, the story of cryptographic
competitions [15,18] has demonstrated that the most secure designs come with simplicity, where every element
is well motivated and a cryptanalyst has as few entry points as possible.

The Password Hashing Competition, which started in 2014, highlighted the following problems:

• Should the memory addressing (indexing functions) be input-independent or input-dependent, or hybrid?
The first type of schemes, where the memory read location are known in advance, is immediately vulnerable
to time-space tradeoff attacks, since an adversary can precompute the missing block by the time it is
needed [4]. In turn, the input-dependent schemes are vulnerable to side-channel attacks [17], as the
timing information allows for much faster password search.

• Is it better to fill more memory but suffer from time-space tradeoffs, or make more passes over the memory
to be more robust? This question was quite difficult to answer due to absence of generic tradeoff tools,
which would analyze the security against tradeoff attacks, and the absence of unified metric to measure
adversary’s costs.

2

• How should the input-independent addresses be computed? Several seemingly secure options have been
attacked [4].

• How large a single memory block should be? Reading smaller random-placed blocks is slower (in cycles
per byte) due to the spacial locality principle of the CPU cache. In turn, larger blocks are difficult to
process due to the limited number of long registers.

• If the block is large, how to choose the internal compression function? Should it be cryptographically
secure or more lightweight, providing only basic mixing of the inputs? Many candidates simply proposed
an iterative construction and argued against cryptographically strong transformations.

• How to exploit multiple cores of modern CPUs, when they are available? Parallelizing calls to the hashing
function without any interaction is subject to simple tradeoff attacks.

Our solution We offer a hashing scheme called Argon2. Argon2 summarizes the state of the art in the design
of memory-hard functions. It is a streamlined and simple design. It aims at the highest memory filling rate
and effective use of multiple computing units, while still providing defense against tradeoff attacks. Argon2
is optimized for the x86 architecture and exploits the cache and memory organization of the recent Intel and
AMD processors. Argon2 has two variants: Argon2d and Argon2i. Argon2d is faster and uses data-depending
memory access, which makes it suitable for cryptocurrencies and applications with no threats from side-channel
timing attacks. Argon2i uses data-independent memory access, which is preferred for password hashing and
password-based key derivation. Argon2i is slower as it makes more passes over the memory to protect from
tradeoff attacks.

We recommend Argon2 for the applications that aim for high performance. Both versions of Argon2 allow
to fill 1 GB of RAM in a fraction of second, and smaller amounts even faster. It scales easily to the arbitrary
number of parallel computing units. Its design is also optimized for clarity to ease analysis and implementation.

Our scheme provides more features and better tradeoff resilience than pre-PHC designs and equals in per-
formance with the PHC finalists [5].

2 Definitions

2.1 Motivation

We aim to maximize the cost of password cracking on ASICs. There can be different approaches to measure
this cost, but we turn to one of the most popular – the time-area product [3,19]. We assume that the password
P is hashed with salt S but without secret keys, and the hashes may leak to the adversaries together with salts:

Tag← H(P, S);

Cracker← {(Tagi, Si)}.

In the case of the password hashing, we suppose that the defender allocates certain amount of time (e.g., 1
second) per password and a certain number of CPU cores (e.g., 4 cores). Then he hashes the password using the
maximum amount M of memory. This memory size translates to certain ASIC area A. The running ASIC time
T is determined by the length of the longest computational chain and by the ASIC memory latency. Therefore,
we maximize the value AT . The other usecases follow a similar procedure.

Suppose that an ASIC designer that wants to reduce the memory and thus the area wants to compute H
using αM memory only for some α < 1. Using some tradeoff specific to H, he has to spend C(α) times as much
computation and his running time increases by at least the factor D(α). Therefore, the maximum possible gain
E in the time-area product is

Emax = max
α

1

αD(α)
.

The hash function is called memory-hard if D(α) > 1/α as α → 0. Clearly, in this case the time-area product
does not decrease. Moreover, the following aspects may further increase it:

• Computing cores needed to implement the C(α) penalty may occupy significant area.

• If the tradeoff requires significant communication between the computing cores, the memory bandwidth
limits may impose additional restrictions on the running time.

In the following text, we will not attempt to estimate time and area with large precision. However, an
interested reader may use the following implementations as reference:

• The 50-nm DRAM implementation [10] takes 550 mm2 per GByte;

3

• The Blake2b implementation in the 65-nm process should take about 0.1 mm2 (using Blake-512 imple-
mentation in [11]);

• The maximum memory bandwidth achieved by modern GPUs is around 400 GB/sec.

2.2 Model for memory-hard functions

The memory-hard functions that we explore use the following mode of operation. The memory array B[] is
filled with the compression function G:

B[0] = H(P, S);
for j from 1 to t

B[j] = G
(
B[φ1(j)], B[φ2(j)], · · · , B[φk(j)]

)
,

(1)

where φi() are some indexing functions.
We distinguish two types of indexing functions:

• Independent of the password and salt, but possibly dependent on other public parameters (thus called
data-independent). The addresses can be calculated by the memory-saving adversaries. We suppose that
the dedicated hardware can handle parallel memory access, so that the cracker can prefetch the data
from the memory. Moreover, if she implements a time-space tradeoff, then the missing blocks can be also
precomputed without losing time. Let the single G core occupy the area equivalent to the β of the entire
memory. Then if we use αM memory, then the gain in the time-area product is

E(α) =
1

α+ C(α)β
.

• Dependent on the password (data-dependent), in our case: φ(j) = g(B[j − 1]). This choice prevents the
adversary from prefetching and precomputing missing data. The adversary figures out what he has to
recompute only at the time the element is needed. If an element is recomputed as a tree of F calls of
average depth D, then the total processing time is multiplied by D. The gain in the time-area product is

E(α) =
1

(α+ C(α)β)D(α)
.

The maximum bandwidth Bwmax is a hypothetical upper bound on the memory bandwidth on the adver-
sary’s architecture. Suppose that for each call to G an adversary has to load R(α) blocks from the memory on
average. Therefore, the adversary can keep the execution time the same as long as

R(α)Bw ≤ Bwmax,

where Bw is the bandwidth achieved by a full-space implementation. In the tradeoff attacks that we apply the
following holds:

R(α) = C(α).

3 Specification of Argon2

There are two flavors of Argon2 – Argon2d and Argon2i. The former one uses data-dependent memory access to
thwart tradeoff attacks. However, this makes it vulnerable for side-channel attacks, so Argon2d is recommended
primarily for cryptocurrencies and backend servers. Argon2i uses data-independent memory access, which is
recommended for password hashing and password-based key derivation.

3.1 Inputs

Argon2 has two types of inputs: primary inputs and secondary inputs, or parameters. Primary inputs are
message P and nonce S, which are password and salt, respectively, for the password hashing. Primary inputs
must always be given by the user such that

• Message P may have any length from 0 to 232 − 1 bytes;

• Nonce S may have any length from 8 to 232 − 1 bytes (16 bytes is recommended for password hashing).

Secondary inputs have the following restrictions:

4

• Degree of parallelism p determines how many independent (but synchronizing) computational chains can
be run. It may take any integer value from 1 to 224 − 1.

• Tag length τ may be any integer number of bytes from 4 to 232 − 1.

• Memory size m can be any integer number of kilobytes from 8p to 232 − 1. The actual number of blocks
is m′, which is m rounded down to the nearest multiple of 4p.

• Number of iterations t (used to tune the running time independently of the memory size) can be any
integer number from 1 to 232 − 1;

• Version number v is one byte 0x13;

• Secret value K (serves as key if necessary, but we do not assume any key use by default) may have any
length from 0 to 32 bytes.

• Associated data X may have any length from 0 to 232 − 1 bytes.

• Type y of Argon2: 0 for Argon2d, 1 for Argon2i.

Argon2 uses internal compression function G with two 1024-byte inputs and a 1024-byte output, and internal
hash function H. Here H is the Blake2b hash function, and G is based on its internal permutation. The mode
of operation of Argon2 is quite simple when no parallelism is used: function G is iterated m times. At step i a
block with index φ(i) < i is taken from the memory (Figure 1), where φ(i) is either determined by the previous
block in Argon2d, or is a fixed value in Argon2i.

G GG

ii− 1 i+ 1φ(i+ 1)φ(i)

Figure 1: Argon2 mode of operation with no parallelism.

3.2 Operation

Argon2 follows the extract-then-expand concept. First, it extracts entropy from message and nonce by hashing
it. All the other parameters are also added to the input. The variable length inputs P, S,K,X are prepended
with their lengths:

H0 = H(p, τ,m, t, v, y, 〈P 〉, P, 〈S〉, S, 〈K〉,K, 〈X〉, X).

Here H0 is 64-byte value, and the parameters p, τ,m, t, v, y, 〈P 〉, 〈S〉, 〈K〉, 〈X〉 are treated as little-endian 32-bit
integers.

Argon2 then fills the memory with m′ = bm4pc · 4p 1024-byte blocks. For tunable parallelism with p threads,

the memory is organized in a matrix B[i][j] of blocks with p rows (lanes) and q = m′/p columns. We denote
the block produced in pass t by Bt[i][j], t > 0. Blocks are computed as follows:

B1[i][0] = H ′(H0|| 0︸︷︷︸
4 bytes

|| i︸︷︷︸
4 bytes

), 0 ≤ i < p;

B1[i][1] = H ′(H0|| 1︸︷︷︸
4 bytes

|| i︸︷︷︸
4 bytes

), 0 ≤ i < p;

B1[i][j] = G(B1[i][j − 1], B1[i′][j′]), 0 ≤ i < p, 2 ≤ j < q.

where block index [i′][j′] is determined differently for Argon2d/2ds and Argon2i, G is the compression function,
and H ′ is a variable-length hash function built upon H. Both G and H ′ will be fully defined in the further text.

5

If t > 1, we repeat the procedure, but we XOR the new blocks to the old ones instead of overwriting them.

Bt[i][0] = G(Bt−1[i][q − 1], B[i′][j′])⊕Bt−1[i][0];

Bt[i][j] = G(Bt[i][j − 1], B[i′][j′])⊕Bt−1[i][j].

Here the block B[i′][j′] may be either Bt[i′][j′] for j′ < j or Bt−1[i′][j′] for j > j′.
After we have done T iterations over the memory, we compute the final block Bfinal as the XOR of the last

column:
Bfinal = BT [0][q − 1]⊕BT [1][q − 1]⊕ · · · ⊕BT [p− 1][q − 1].

Then we apply H ′ to Bfinal to get the output tag.

Tag← H ′(Bfinal).

Variable-length hash function. Let Hx be a hash function with x-byte output (in our case Hx is Blake2b,
which supports 1 ≤ x ≤ 64). We define H ′ as follows. Let Vi be a 64-byte block, and Ai be its first 32 bytes,
and τ < 232 be the 32-bit tag length (viewed little-endian) in bytes. Then we define

if τ ≤ 64

H ′(X)
def
= Hτ (τ ||X).

else
r = dτ/32e − 2;
V1 ← H64(τ ||X);
V2 ← H64(V1);
· · ·
Vr ← H64(Vr−1),
Vr+1 ← Hτ−32r(Vr).

H ′(X)
def
= A1||A2|| . . . Ar||Vr+1.

p lanes

4 slices

message

nonce

parameters

H

B[0][0]

B[p− 1][0]

HHH

Tag

Figure 2: Single-pass Argon2 with p lanes and 4 slices.

3.3 Indexing

To enable parallel block computation, we further partition the memory matrix into S = 4 vertical slices. The
intersection of a slice and a lane is a segment of length q/S. Segments of the same slice are computed in
parallel, and may not reference blocks from each other. All other blocks can be referenced, and now we explain
the procedure in detail.

Getting two 32-bit values. In Argon2d we select the first 32 bits of block B[i][j − 1] and denote this value
by J1. Then we take the next 32 bits of B[i][j − 1] and denote this value by J2. In Argon2i we run G2 — the
2-round compression function G — in the counter mode, where the first input is all-zero block, and the second
input is constructed as

(r︸︷︷︸
8 bytes

|| l︸︷︷︸
8 bytes

|| s︸︷︷︸
8 bytes

|| m′︸︷︷︸
8 bytes

|| t︸︷︷︸
8 bytes

|| x︸︷︷︸
8 bytes

|| i︸︷︷︸
8 bytes

|| 0︸︷︷︸
968 bytes

),

where

6

• r is the pass number;

• l is the lane number;

• s is the slice number;

• m′ is the total number of memory blocks;

• t is the total number of passes;

• x is the type of the Argon function (equals 1 for Argon2i);

• i is the counter starting in each segment from 1.

All the numbers are put as little-endian. We increase the counter so that each application of G2 gives 128 64-bit
values J1||J2.

Mapping J1, J2 to the reference block index The value l = J2 mod p determines the index of the lane
from which the block will be taken. If we work with the first slice and the first pass (r = s = 0), then l is set
to the current lane index.

Then we determine the set of indices R that can be referenced for given [i][j] according to the following
rules:

1. If l is the current lane, then R includes all blocks computed in this lane, that are not overwritten yet,
excluding B[i][j − 1].

2. If l is not the current lane, then R includes all blocks in the last S−1 = 3 segments computed and finished
in lane l. If B[i][j] is the first block of a segment, then the very last block from R is excluded.

We are going to take a block from R with a non-uniform distribution over [0..|R|):

J1 ∈ [0..232)→ |R|
(

1− (J1)2

264

)
.

To avoid floating-point computation, we use the following integer approximation:

x = (J1)2/232;

y = (|R| ∗ x)/232;

z = |R| − 1− y.
Then we enumerate the blocks in R in the order of construction and select z-th block from it as the reference
block.

3.4 Compression function G

Compression function G is built upon the Blake2b round function P (fully defined in Section A). P operates
on the 128-byte input, which can be viewed as 8 16-byte registers (see details below):

P(A0, A1, . . . , A7) = (B0, B1, . . . , B7).

Compression function G(X,Y) operates on two 1024-byte blocks X and Y . It first computes R = X ⊕ Y .
Then R is viewed as a 8 × 8-matrix of 16-byte registers R0, R1, . . . , R63. Then P is first applied rowwise, and
then columnwise to get Z:

(Q0, Q1, . . . , Q7)← P(R0, R1, . . . , R7);

(Q8, Q9, . . . , Q15)← P(R8, R9, . . . , R15);

. . .

(Q56, Q57, . . . , Q63)← P(R56, R57, . . . , R63);

(Z0, Z8, Z16, . . . , Z56)← P(Q0, Q8, Q16, . . . , Q56);

(Z1, Z9, Z17, . . . , Z57)← P(Q1, Q9, Q17, . . . , Q57);

. . .

(Z7, Z15, Z23, . . . , Z63)← P(Q7, Q15, Q23, . . . , Q63).

Finally, G outputs Z ⊕R:

G : (X,Y) → R = X ⊕ Y P−→ Q
P−→ Z → Z ⊕R.

7

P
P

P

X Y

R

Q

P P P

Z

Blake2b
round

Figure 3: Argon2 compression function G.

4 Features

Argon2 is a multi-purpose family of hashing schemes, which is suitable for password hashing, key derivation,
cryptocurrencies and other applications that require provably high memory use. Argon2 is optimized for the x86
architecture, but it does not slow much on older processors. The key feature of Argon2 is its performance and
the ability to use multiple computational cores in a way that prohibits time-memory tradeoffs. Several features
are not included into this version, but can be easily added later.

4.1 Available features

Now we provide an extensive list of features of Argon2.
Performance. Argon2 fills memory very fast, thus increasing the area multiplier in the time-area product

for ASIC-equipped adversaries. Data-independent version Argon2i securely fills the memory spending about 2
CPU cycles per byte, and Argon2d is three times as fast. This makes it suitable for applications that need
memory-hardness but can not allow much CPU time, like cryptocurrency peer software.

Tradeoff resilience. Despite high performance, Argon2 provides reasonable level of tradeoff resilience. Our
tradeoff attacks previously applied to Catena and Lyra2 show the following. With default number of passes over
memory (1 for Argon2d, 3 for Argon2i, an ASIC-equipped adversary can not decrease the time-area product if
the memory is reduced by the factor of 4 or more. Much higher penalties apply if more passes over the memory
are made.

Scalability. Argon2 is scalable both in time and memory dimensions. Both parameters can be changed
independently provided that a certain amount of time is always needed to fill the memory.

Parallelism. Argon2 may use up to 224 threads in parallel, although in our experiments 8 threads already
exhaust the available bandwidth and computing power of the machine.

GPU/FPGA/ASIC-unfriendly. Argon2 is heavily optimized for the x86 architecture, so that imple-
menting it on dedicated cracking hardware should be neither cheaper nor faster. Even specialized ASICs would
require significant area and would not allow reduction in the time-area product.

Additional input support. Argon2 supports additional input, which is syntactically separated from the
message and nonce, such as secret key, environment parameters, user data, etc..

8

4.2 Possible future extensions

Argon2 can be rather easily tuned to support other compression functions, hash functions and block sizes. ROM
can be easily integrated into Argon2 by simply including it into the area where the blocks are referenced from.

5 Security analysis

All the attacks detailed below apply to one-lane version of Argon2, but can be carried to the multi-lane version
with the same efficiency.

5.1 Ranking tradeoff attack

To figure out the costs of the ASIC-equipped adversary, we first need to calculate the time-space tradeoffs for
Argon2. To the best of our knowledge, the first generic tradeoffs attacks were reported in [4], and they apply to
both data-dependent and data-independent schemes. The idea of the ranking method [4] is as follows. When
we generate a memory block B[l], we make a decision, to store it or not. If we do not store it, we calculate the
access complexity of this block — the number of calls to F needed to compute the block, which is based on the
access complexity of B[l − 1] and B[φ(l)]. The detailed strategy is as follows:

1. Select an integer q (for the sake of simplicity let q divide T).

2. Store B[kq] for all k;

3. Store all ri and all access complexities;

4. Store the T/q highest access complexities. If B[i] refers to a vertex from this top, we store B[i].

The memory reduction is a probabilistic function of q. We applied the algorithm to the indexing function of
Argon2 and obtained the results in Table 1. Each recomputation is a tree of certain depth, also given in the
table.

We conclude that for data-dependent one-pass schemes the adversary is always able to reduce the memory
by the factor of 3 and still keep the time-area product the same.

α 1
2

1
3

1
4

1
5

1
6

1
7

C(α) 1.5 4 20.2 344 4660 218

D(α) 1.5 2.8 5.5 10.3 17 27

Table 1: Time and computation penalties for the ranking tradeoff attack for the Argon2 indexing function.

5.2 Memory optimization attack

As reported in [6], it is possible to optimize the memory use in the earlier version 1.2.1 of Argon2, concretely for
Argon2i. The memory blocks produced in the version 1.2.1 at second and later passes replaced, not overwrote
the blocks at earlier passes. Therefore, for each block B[i] there is a time gap (let us call it a no-use gap)
between the moment the block is used for the last time (as a reference or as a fresh new block) and the moment
it is overwritten. We formalize this issue as follows. Let us denote by φr(i) the reference block index for block
Br[i].

• For t-pass Argon2i the block Br[i], r < t is not used between step lri = max
(
i,maxφ(jr)=i j

)
and step i of

pass r + 1, where it is overwritten.

• For t-pass Argon2i the block Bt[i] is not used between step lti = max
(
i,maxφ(jr)=i j

)
and step m′ of pass

t, where it is discarded.

Since addresses li can be precomputed, an attacker can figure out for each block Br[i] when it can be
discarded. A separate data structure will be needed though to keep the address of newly produced blocks as
they land up at pseudo-random locations at the memory.

This saving strategy uses the fraction

Lt =
∑
i

(
1− lti

m′

)

9

of memory for the last pass, and

Lr =
∑
i

(
m′ + i− lri

m′

)
for the previous passes. Our experiments show that in 1-pass Argon2i L1 ≈ 0.15, i.e. on average 1/7-th of
memory is used. Since in the straightforward application on average 1/2 of memory is used, the advantage in
the time-area product is about 3.5. For t > 1 this strategy uses 0.25 of memory on average, so the time-area
product advantage is close to 4. If we use the peak memory amount in the time-area calculations, then the
advantage would be 5 and 2.7, respectively.

The version 1.3 of Argon2 replaces overwriting operation with the XOR. This gives minimal overhead on the
performance: for memory requirements of 8 MB and higher the performance difference is between 5% and 15%
depending on the operating system and hardware. For instance, the highest speed of 3-pass Argon2d v.1.2.1 on
1.8 GHz CPU with Ubuntu is 1.61 cycles per byte, whereas for v.1.3 it is 1.7 cpb (both measured for 2 GB of
RAM, 4 threads).

In the version 1.3 this saving strategy applies to the one-pass Argon2i only, where it brings the same time-
area product advantage. The multi-pass versions are safe as all the blocks have to be kept in memory till the
overwrite.

5.3 Attack on iterative compression function

Let us consider the following structure of the compression function F (X,Y), where X and Y are input blocks:

• The input blocks of size t are divided into shorter subblocks of length t′ (for instance, 128 bits) X0, X1,
X2, . . . and Y0, Y1, Y2,

• The output block Z is computed subblockwise:

Z0 = G(X0, Y0);

Zi = G(Xi, Yi, Zi−1), i > 0.

This scheme resembles the duplex authenticated encryption mode, which is secure under certain assumptions
on G. However, it is totally insecure against tradeoff adversaries, as shown below.

Suppose that an adversary computes Z = F (X,Y) but Y is not stored. Suppose that Y is a tree function
of stored elements of depth D. The adversary starts with computing Z0, which requires only Y0. In turn,
Y0 = G(X ′0, Y

′
0) for some X ′, Y ′. Therefore, the adversary computes the tree of the same depth D, but with

the function G instead of F . Z1 is then a tree function of depth D + 1, Z2 of depth D + 2, etc. In total,
the recomputation takes (D + s)LG time, where s is the number of subblocks and LG is the latency of G.
This should be compared to the full-space implementation, which takes time sLG. Therefore, if the memory is
reduced by the factor q, then the time-area product is changed as

ATnew =
D(q) + s

sq
AT.

Therefore, if
D(q) ≤ s(q − 1), (2)

the adversary wins.
One may think of using the Zm−1[l−1] as input to computing Z0[l]. Clearly, this changes little in adversary’s

strategy, who could simply store all Zm−1, which is feasible for large m. In concrete proposals, s can be 64,
128, 256 and even larger.

We conclude that F with an iterative structure is insecure. We note that this attack applies also to other
PHC candidates with iterative compression function.

5.4 Security of Argon2 to generic attacks

Now we consider preimage and collision resistance of both versions of Argon2. Variable-length inputs are
prepended with their lengths, which shall ensure the absence of equal input strings. Inputs are processed by a
cryptographic hash function, so no collisions should occur at this stage.

10

Internal collision resistance. The compression function G is not claimed to be collision resistant, so it may
happen that distinct inputs produce identical outputs. Recall that G works as follows:

G(X,Y) = P (Z)⊕ (Z), Z = X ⊕ Y.

where P is a permutation based on the 2-round Blake2b permutation. Let us prove that all Z are different
under certain assumptions.

Theorem 1. Let Π be Argon2d or Argon2i with d lanes, s slices, and t passes over memory. Assume that

• P (Z)⊕ Z is collision-resistant, i.e. it is hard to find a, b such that P (a)⊕ a = P (b)⊕ b.
• P (Z)⊕Z is 4-generalized-birthday-resistant, i.e. it is hard to find distinct a, b, c, d such that P (a)⊕P (b)⊕
P (c)⊕ P (d) = a⊕ b⊕ c⊕ d.

Then all the blocks B[i] generated in those t passes are different.

Proof. By specification, the value of Z is different for the first two blocks of each segment in the first slice in
the first pass. Consider the other blocks.

Let us enumerate the blocks according to the moment they are computed. Within a slice, where segments
can be computed in parallel, we enumerate lane 0 fully first, then lane 1, etc.. Slices are then computed and
enumerated sequentially. Suppose the proposition is wrong, and let (B[x], B[y]) be a block collision such that
x < y and y is the smallest among all such collisions. As F (Z)⊕ Z is collision resistant, the collision occurs in
Z, i.e.

Zx = Zy.

Let rx, ry be reference block indices for B[x] and B[y], respectively, and let px, py be previous block indices for
B[x], B[y]. Then we get

B[rx]⊕B[px] = B[ry]⊕B[py].

As we assume 4-generalized-birthday-resistance, some arguments are equal. Consider three cases:

• rx = px. This is forbidden by the rule 3 in Section 3.3.

• rx = ry. We get B[px] = B[py]. As px, py < y, and y is the smallest yielding such a collision, we get
px = py. However, by construction px 6= py for x 6= y.

• rx = py. Then we get B[ry] = B[px]. As ry < y and px < x < y, we obtain ry = px. Since py = rx < x < y,
we get that x and y are in the same slice, we have two options:

– py is the last block of a segment. Then y is the first block of a segment in the next slice. Since rx
is the last block of a segment, and x < y, x must be in the same slice as y, and x can not be the
first block in a segment by the rule 4 in Section 3.3. Therefore, ry = px = x − 1. However, this is
impossible, as ry can not belong to the same slice as y.

– py is not the last block of a segment. Then rx = py = y − 1, which implies that rx ≥ x. The latter
is forbidden.

Thus we get a contradiction in all cases. This ends the proof.

The compression function G is not claimed to be collision resistant nor preimage-resistant. However, as the
attacker has no control over its input, the collisions are highly unlikely. We only take care that the starting
blocks are not identical by producing the first two blocks with a counter and forbidding to reference from the
memory the last block as (pseudo)random.

Argon2d does not overwrite the memory, hence it is vulnerable to garbage-collector attacks and similar ones,
and is not recommended to use in the setting where these threats are possible. Argon2i with 3 passes overwrites
the memory twice, thus thwarting the memory-leak attacks. Even if the entire working memory of Argon2i is
leaked after the hash is computed, the adversary would have to compute two passes over the memory to try the
password.

5.5 Security of Argon2 to ranking tradeoff attacks

Time and computational penalties for 1-pass Argon2d are given in Table 1. It suggests that the adversary can
reduce memory by the factor of 3 at most while keeping the time-area product the same.

Argon2i is more vulnerable to tradeoff attacks due to its data-independent addressing scheme. We applied
the ranking algorithm to 3-pass Argon2i to calculate time and computational penalties. We found out that the
memory reduction by the factor of 3 already gives the computational penalty of around 214. The 214 Blake2b
cores would take more area than 1 GB of RAM (Section 2.1), thus prohibiting the adversary to further reduce
the time-area product. We conclude that the time-area product cost for Argon2i can be reduced by 3 at best.

11

5.6 Security of Argon2i to generic tradeoff attacks on random graphs

The recent paper by Alwen and Blocki [1] reports an improved attack on Argon2i (all versions) as an instance
of hash functions based on random graphs.

For t-pass Argon2i, Alwen and Blocki explicitly construct a set of O(T 3/4) nodes so that removing these
nodes from the computation graph yields the so called sandwich graph with O(T 1/4) layers and O(T 1/2) depth
and size. The computation proceeds as follows:

• Mark certain v = O(T 3/4) blocks as to be stored.

• For every segment of length T 3/4:

– Compute the reference blocks of the segment blocks in parallel.

– Compute the segment blocks consecutively, store blocks that needs storing.

Using O(T 1/2) cores, the segment computation takes time O(T 3/4) and the total time is O(T). The cores are
used only for O(T 1/2) time, so it is possible to amortize costs computing O(T 1/4) instances using these cores
in the round-robin fashion. The memory complexity of each step is about to T log T .

A precise formula for the time-area complexity using this tradeoff strategy is given in Corollary1 5.6 of [1]:

ATnew = 2T 7/4

(
5 + t+

lnT

8

)
,

Since the memory consumption in the standard implementation is M = T/t, the standard AT value is T 2/t and
the time-area advantage of the Alwen-Blocki attack is

E =
AT

ATnew
=

T 1/4

2t(5 + (ln t)/2 + lnT
8)
≤ M1/4

2t3/4(5 + 0.625 ln t+ 0.125 lnM)
.

For t ≥ 3 we get that E ≤M1/4/36. Therefore, for M up to 220 (1 GB) the advantage is smaller than 1 (i.e. the
attack is not beneficial to the adversary at all), and for M up to 224 (16 GB) it is smaller than 2. Therefore,
this approach is not better than the ranking attack. However, it is a subject of active research and we’ll update
this documents if improvements appear.

5.7 Summary of tradeoff attacks

The best attack on the 1- and 2-pass Argon2i (v.1.3) is the low-storage attack from [6], which reduces the
time-area product (using the peak memory value) by the factor of 5.

The best attack for t-pass (t > 2) Argon2i is the ranking tradeoff attack, which reduces the time-area product
by the factor of 3.

The best attack on the t-pass Argon2d is the ranking tradeoff attack, which reduces the time-area product
by the factor 1.33.

6 Design rationale

Argon2 was designed with the following primary goal: to maximize the cost of exhaustive search on non-x86
architectures, so that the switch even to dedicated ASICs would not give significant advantage over doing the
exhaustive search on defender’s machine.

6.1 Indexing function

The basic scheme (1) was extended to implement:

• Tunable parallelism;

• Several passes over memory.

For the data-dependent addressing we set φ(l) = g(B[l]), where g simply truncates the block and takes the
result modulo l− 1. We considered taking the address not from the block B[l− 1] but from the block B[l− 2],
which should have allowed to prefetch the block earlier. However, not only the gain in our implementations is
limited, but also this benefit can be exploited by the adversary. Indeed, the efficient depth D(q) is now reduced
to D(q)− 1, since the adversary has one extra timeslot. Table 1 implies that then the adversary would be able

1the authors denote the total number of blocks by n and the number of passes by k.

12

to reduce the memory by the factor of 5 without increasing the time-area product (which is a 25% increase in
the reduction factor compared to the standard approach).

For the data-independent addressing we use a simple PRNG, in particular the compression function G in the
counter mode. Due to its long output, one call (or two consecutive calls) would produce hundreds of addresses,
thus minimizing the overhead. This approach does not give provable tradeoff bounds, but instead allows the
analysis with the tradeoff algorithms suited for data-dependent addressing.

Motivation for our indexing functions Initially, we considered uniform selection of referenced blocks, but
then we considered a more generic case:

φ← d(264 − (J1)γ) · |Rl|/264e

We tried to choose the γ which would maximize the adversary’s costs if he applies the tradeoff based on
the ranking method. We also attempted to make the reference block distribution close to uniform, so that each
memory block is referenced similar number of times.

For each 1 ≤ γ ≤ 5 with step 0.1 we applied the ranking method with sliding window and selected the
best available tradeoffs. We obtained a set of time penalties {Dγ(α)} and computational penalties {Cγ(α)} for
0.01 < α < 1. We also calculated the reference block distribution for all possible γ. We considered two possible
metrics:

1. Minimum time-area product
ATγ = min

α
{α ·Dγ(α)}.

2. Maximum memory reduction which reduces the time-area product compared to the original:

αγ = min
α
{α |Dγ(α) < α}.

3. The goodness-of-fit value of the reference block distribution w.r.t. the uniform distribution with n bins:

χ2 =
∑
i

(pi − 1
n)2

1
n

,

where pi is the average probability of the block from i-th bin to be referenced. For example, if p3 =
0.2, n = 10 and there are 1000 blocks, then blocks from 201 to 300 are referenced 1000 · 0.2 = 200 times
throughout the computation.

We got the following results for n = 10:

γ ATγ αγ χ2

1 0.78 3.95 0.89
2 0.72 3.2 0.35
3 0.67 3.48 0.2
4 0.63 3.9 0.13
5 0.59 4.38 0.09

We conclude that the time-area product achievable by the attacker slowly decreases as γ grows. However, the
difference between γ = 1 and γ = 5 is only the factor of 1.3. We also see that the time-area product can be
kept below the original up to q = 3.2 for γ = 2, whereas for γ = 4 and γ = 1 such q is close to 4. To avoid
floating-point computations, we restrict to integer γ. Thus the optimal values are γ = 2 and γ = 3, where the
former is slightly better in the first two metrics.

However, if we consider the reference block uniformity, the situation favors larger γ considerably. We see
that the χ2 value is decreased by the factor of 2.5 when going from γ = 1 to γ = 2, and by the factor of 1.8
further to γ = 3. In concrete probabilities (see also Figure 4), the first 20% of blocks accumulate 40% of all
reference hits for γ = 2 and 32% for γ = 3 (23.8% vs 19.3% hit for the first 10% of blocks).

To summarize, γ = 2 and γ = 3 both are better against one specific attacker and slightly worse against the
other. We take γ = 2 as the value that minimizes the AT gain, as we consider this metric more important.

6.2 Implementing parallelism

As modern CPUs have several cores possibly available for hashing, it is tempting to use these cores to increase
the bandwidth, the amount of filled memory, and the CPU load. The cores of the recent Intel CPU share
the L3 cache and the entire memory, which both have large latencies (100 cycles and more). Therefore, the
inter-processor communication should be minimal to avoid delays.

13

Memory fraction (1/q) 1
2

1
3

1
4

1
5

1
6

γ = 1 1.6 2.9 7.3 16.4 59

γ = 2 1.5 4 20.2 344 4700

γ = 3 1.4 4.3 28.1 1040 217

Table 2: Computational penalties for the ranking tradeoff attack with a sliding window, 1 pass.

Memory fraction (1/q) 1
2

1
3

1
4

1
5

1
6

γ = 1 1.6 2.5 4 5.8 8.7

γ = 2 1.5 2.6 5.4 10.7 17

γ = 3 1.3 2.5 5.3 10.1 18

Table 3: Depth penalties for the ranking tradeoff attack with a sliding window, 1 pass.

The simplest way to use p parallel cores is to compute and XOR p independent calls to H:

H ′(P, S) = H(P, S, 0)⊕H(P, S, 1)⊕ · · · ⊕H(P, S, p− 1).

If a single call uses m memory units, then p calls use pm units. However, this method admits a trivial tradeoff:
an adversary just makes p sequential calls to H using only m memory in total, which keeps the time-area
product constant.

We suggest the following solution for p cores: the entire memory is split into p lanes of l equal slices each,
which can be viewed as elements of a (p× l)-matrix Q[i][j]. Consider the class of schemes given by Equation (1).
We modify it as follows:

• p invocations to H run in parallel on the first column Q[∗][0] of the memory matrix. Their indexing
functions refer to their own slices only;

• For each column j > 0, l invocations to H continue to run in parallel, but the indexing functions now may
refer not only to their own slice, but also to all jp slices of previous columns Q[∗][0], Q[∗][1], . . . , Q[∗][j−1].

• The last blocks produced in each slice of the last column are XORed.

This idea is easily implemented in software with p threads and l joining points. It is easy to see that the adversary
can use less memory when computing the last column, for instance by computing the slices sequentially and
storing only the slice which is currently computed. Then his time is multiplied by (1 + p−1

l), whereas the

memory use is multiplied by (1− p−1
pl), so the time-area product is modified as

ATnew = AT

(
1− p− 1

pl

)(
1 +

p− 1

l

)
.

For 2 ≤ p, l ≤ 10 this value is always between 1.05 and 3. We have selected l = 4 as this value gives low
synchronisation overhead while imposing time-area penalties on the adversary who reduces the memory even
by the factor 3/4. We note that values l = 8 or l = 16 could be chosen.

If the compression function is collision-resistant, then one may easily prove that block collisions are highly
unlikely. However, we employ a weaker compression function, for which the following holds:

G(X,Y) = F (X ⊕ Y),

Figure 4: Access frequency for different memory segments (10%-buckets) and different exponents (from γ = 1
to γ = 5) in the indexing functions.

14

which is invariant to swap of inputs and is not collision-free. We take special care to ensure that the mode of
operation does not allow such collisions by introducing additional rule:

• First block of a segment can not refer to the last block of any segment in the previous slice.

We prove that block collisions are unlikely under reasonable conditions on F in Section 5.4.

6.3 Compression function design

6.3.1 Overview

In contrast to attacks on regular hash functions, the adversary does not control inputs to the compression
function G in our scheme. Intuitively, this should relax the cryptographic properties required from the compres-
sion function and allow for a faster primitive. To avoid being the bottleneck, the compression function ideally
should be on par with the performance of memcpy() or similar function, which may run at 0.1 cycle per byte
or even faster. This much faster than ordinary stream ciphers or hash functions, but we might not need strong
properties of those primitives.

However, we first have to determine the optimal block size. When we request a block from a random location
in the memory, we most likely get a cache miss. The first bytes would arrive at the CPU from RAM within
at best 10 ns, which accounts for 30 cycles. In practice, the latency of a single load instruction may reach 100
cycles and more. However, this number can be amortized if we request a large block of sequentially stored bytes.
When the first bytes are requested, the CPU stores the next ones in the L1 cache, automatically or using the
prefetch instruction. The data from the L1 cache can be loaded as fast as 64 bytes per cycle on the Haswell
architecture, though we did not manage to reach this speed in our application.

Therefore, the larger the block is, the higher the throughput is. We have made a series of experiments with
a non-cryptographic compression function, which does little beyond simple XOR of its inputs, and achieved the
performance of around 0.7 cycles per byte per core with block sizes of 1024 bits and larger.

6.3.2 Design criteria

It was demonstrated that a compression function with a large block size may be vulnerable to tradeoff attacks
if it has a simple iterative structure, like modes of operation for a blockcipher [4] (some details in Section 5.3).

Thus we formulate the following design criteria:

• The compression function must require about t bits of storage (excluding inputs) to compute any output
bit.

• Each output byte of F must be a nonlinear function of all input bytes, so that the function has differential
probability below certain level, for example 1

4 .

These criteria ensure that the attacker is unable to compute an output bit using only a few input bits or a few
stored bits. Moreover, the output bits should not be (almost) linear functions of input bits, as otherwise the
function tree would collapse.

We have not found any generic design strategy for such large-block compression functions. It is difficult to
maintain diffusion on large memory blocks due to the lack of CPU instructions that interleave many registers
at once. A naive approach would be to apply a linear transformation with certain branch number. However,
even if we operate on 16-byte registers, a 1024-byte block would consist of 64 elements. A 64× 64-matrix would
require 32 XORs per register to implement, which gives a penalty about 2 cycles per byte.

Instead, we propose to build the compression function on the top of a transformation P that already mixes
several registers. We apply P in parallel (having a P-box), then shuffle the output registers and apply it again.
If P handles p registers, then the compression function may transform a block of p2 registers with 2 rounds of
P-boxes. We do not have to manually shuffle the data, we just change the inputs to P-boxes. As an example,
an implementation of the Blake2b [2] permutation processes 8 128-bit registers, so with 2 rounds of Blake2b we
can design a compression function that mixes the 8192-bit block. We stress that this approach is not possible
with dedicated AES instructions. Even though they are very fast, they apply only to the 128-bit block, and we
still have to diffuse its content across other blocks.

We replace the original Blake2b round function with its modification BlaMka [13], where the modular
additions in G are combined with 32-bit multiplications. Our motivation was to increase the circuit depth (and
thus the running time) of a potential ASIC implementation while having roughly the same running time on CPU
thanks to parallelism and pipelining. Extra multiplications in the scheme serve well, as the best addition-based
circuits for multiplication have latency about 4-5 times the addition latency for 32-bit multiplication (or roughly
logn for n-bit multiplication).

As a result, any output 64-bit word of P is implemented by a chain of additions, multiplications, XORs, and
rotations. The shortest possible chain for the 1 KB-block (e.g, from v0 to v0) consists of 12 MULs, 12 XORs,
and 12 rotations.

15

Argon2d (1 pass) Argon2i (3 passes)
Processor Threads Cycles/Byte Bandwidth Cycles/Byte Bandwidth

(GB/s) (GB/s)
i7-4500U 1 1.3 2.5 4.7 2.6
i7-4500U 2 0.9 3.8 2.8 4.5
i7-4500U 4 0.6 5.4 2 5.4
i7-4500U 8 0.6 5.4 1.9 5.8

Table 4: Speed and memory bandwidth of Argon2(d/i) measured on 1 GB memory filled. Core i7-4500U —
Intel Haswell 1.8 GHz, 4 cores

6.4 User-controlled parameters

We have made a number of design choices, which we consider optimal for a wide range of applications. Some
parameters can be altered, some should be kept as is. We give a user full control over:

• Amount M of memory filled by algorithm. This value, evidently, depends on the application and the
environment. There is no ”insecure” value for this parameter, though clearly the more memory the
better.

• Number T of passes over the memory. The running time depends linearly on this parameter. We expect
that the user chooses this number according to the time constraints on the application. Again, there is
no ”insecure value” for T .

• Degree d of parallelism. This number determines the number of threads used by an optimized implemen-
tation of Argon2. We expect that the user is restricted by a number of CPU cores (or half-cores) that can
be devoted to the hash function, and chooses d accordingly (double the number of cores).

• Length of password/message, salt/nonce, and tag (except for some low, insecure values for salt and tag
lengths).

We allow to choose another compression function G, hash function H, block size b, and number of slices l.
However, we do not provide this flexibility in a reference implementation as we guess that the vast majority of
the users would prefer as few parameters as possible.

7 Performance

7.1 x86 architecture

To optimize the data load and store from/to memory, the memory that will be processed has to be alligned on
16-byte boundary when loaded/stored into/from 128-bit registers and on 32-byte boundary when loaded/stored
into/from 256-bit registers. If the memory is not aligned on the specified boundaries, then each memory
operation may take one extra CPU cycle, which may cause consistent penalties for many memory accesses.

The results presented are obtained using the gcc 4.8.2 compiler with the following options: -m64 -mavx

-std=c++11 -pthread -O3. The cycle count value was measured using the rdtscp Intel intrinsics C function
which inlines the RDTSCP assembly instruction that returns the 64-bit Time Stamp Counter (TSC) value. The
instruction waits for prevoius instruction to finish and then is executed, but meanwhile the next instructions may
begin before the value is read. Although this shortcoming, we used this method because it is the most realiable
handy method to measure the execution time and also it is widely used in other cryptographic operations
benchmarking.

8 Applications

Argon2d is optimized for settings where the adversary does not get regular access to system memory or CPU,
i.e. he can not run side-channel attacks based on the timing information, nor he can recover the password much
faster using garbage collection [7]. These settings are more typical for backend servers and cryptocurrency
minings. For practice we suggest the following settings:

• Cryptocurrency mining, that takes 0.1 seconds on a 2 Ghz CPU using 1 core — Argon2d with 2 lanes and
250 MB of RAM;

16

• Backend server authentication, that takes 0.5 seconds on a 2 GHz CPU using 4 cores — Argon2d with 8
lanes and 4 GB of RAM.

Argon2i is optimized for more dangerous settings, where the adversary possibly can access the same machine,
use its CPU or mount cold-boot attacks. We use three passes to get rid entirely of the password in the memory.
We suggest the following settings:

• Key derivation for hard-drive encryption, that takes 3 seconds on a 2 GHz CPU using 2 cores — Argon2i
with 4 lanes and 6 GB of RAM;

• Frontend server authentication, that takes 0.5 seconds on a 2 GHz CPU using 2 cores — Argon2i with 4
lanes and 1 GB of RAM.

9 Recommended parameters

We recommend the following procedure to select the type and the parameters for practical use of Argon2:

1. Select the type y. If you do not know the difference between them or you consider side-channel attacks
as viable threat, choose Argon2i. Otherwise any choice is fine, including optional types.

2. Figure out the maximum number h of threads that can be initiated by each call to Argon2.

3. Figure out the maximum amount m of memory that each call can afford.

4. Figure out the maximum amount x of time (in seconds) that each call can afford.

5. Select the salt length. 128 bits is sufficient for all applications, but can be reduced to 64 bits in the case
of space constraints.

6. Select the tag length. 128 bits is sufficient for most applications, including key derivation. If longer keys
are needed, select longer tags.

7. If side-channel attacks is a viable threat, enable the memory wiping option in the library call.

8. Run the scheme of type y, memory m and h lanes and threads, using different number of passes t. Figure
out the maximum t such that the running time does not exceed x. If it exceeds x even for t = 1, reduce
m accordingly.

9. Hash all the passwords with the just determined values m, h, and t.

10 Conclusion

We presented the memory-hard function Argon2, which maximizes the ASIC implementation costs for given
CPU computing time. We aimed to make the design clear and compact, so that any feature and operation has
certain rationale. The clarity and brevity of the Argon2 design has been confirmed by its eventual selection as
the PHC winner.

Further development of tradeoff attacks with dedication to Argon2 is the subject of future work. It also
remains to be seen how Argon2 withstands GPU cracking with low memory requirements.

References

[1] J. Alwen and J. Blocki, “Efficiently computing data-independent memory-hard functions,” IACR Cryptol-
ogy ePrint Archive, vol. 2016, p. 115, 2016.

[2] J. Aumasson, S. Neves, Z. Wilcox-O’Hearn, and C. Winnerlein, “BLAKE2: simpler, smaller, fast as MD5,”
in ACNS’13, ser. Lecture Notes in Computer Science, vol. 7954. Springer, 2013, pp. 119–135.

[3] D. J. Bernstein and T. Lange, “Non-uniform cracks in the concrete: The power of free precomputation,”
in ASIACRYPT’13, ser. Lecture Notes in Computer Science, vol. 8270. Springer, 2013, pp. 321–340.

[4] A. Biryukov and D. Khovratovich, “Tradeoff cryptanalysis of memory-hard functions,” in Advances in
Cryptology - ASIACRYPT 2015, ser. Lecture Notes in Computer Science, T. Iwata and J. H. Cheon, Eds.,
vol. 9453. Springer, 2015, pp. 633–657.

17

[5] M. Broz, “Phc benchmarks,” 2015, https://github.com/mbroz/PHCtest/blob/master/output/phc round2.
pdf.

[6] H. Corrigan-Gibbs, D. Boneh, and S. E. Schechter, “Balloon hashing: Provably space-hard hash functions
with data-independent access patterns,” IACR Cryptology ePrint Archive, vol. 2016, p. 27, 2016.

[7] C. Forler, E. List, S. Lucks, and J. Wenzel, “Overview of the candidates for the password hashing competi-
tion - and their resistance against garbage-collector attacks,” Cryptology ePrint Archive, Report 2014/881,
2014, http://eprint.iacr.org/.

[8] C. Forler, S. Lucks, and J. Wenzel, “Catena: A memory-consuming password scrambler,” IACR Cryptology
ePrint Archive, Report 2013/525, 2013, non-tweaked version http://eprint.iacr.org/2013/525/20140105:
194859.

[9] ——, “Memory-demanding password scrambling,” in ASIACRYPT’14, ser. Lecture Notes in Computer
Science, vol. 8874. Springer, 2014, pp. 289–305, tweaked version of [8].

[10] B. Giridhar, M. Cieslak, D. Duggal, R. G. Dreslinski, H. M. Chen, R. Patti, B. Hold, C. Chakrabarti, T. N.
Mudge, and D. Blaauw, “Exploring DRAM organizations for energy-efficient and resilient exascale mem-
ories,” in International Conference for High Performance Computing, Networking, Storage and Analysis
(SC 2013). ACM, 2013, pp. 23–35.

[11] F. Gürkaynak, K. Gaj, B. Muheim, E. Homsirikamol, C. Keller, M. Rogawski, H. Kaeslin, and J.-P. Kaps,
“Lessons learned from designing a 65nm ASIC for evaluating third round SHA-3 candidates,” in Third
SHA-3 Candidate Conference, Mar. 2012.

[12] M. E. Hellman, “A cryptanalytic time-memory trade-off,” Information Theory, IEEE Transactions on,
vol. 26, no. 4, pp. 401–406, 1980.

[13] M. A. S. Jr., L. C. Almeida, E. R. Andrade, P. C. F. dos Santos, and P. S. L. M. Barreto, “Lyra2:
Password hashing scheme with improved security against time-memory trade-offs,” Cryptology ePrint
Archive, Report 2015/136, 2015, http://eprint.iacr.org/.

[14] C. Lee, “Litecoin - open source p2p digital currency,” https://bitcointalk.org/index.php?topic=47417.0,
2011, https://litecoin.org/.

[15] NIST, SHA-3 competition, 2007, http://csrc.nist.gov/groups/ST/hash/sha-3/index.html.

[16] C. Percival, “Stronger key derivation via sequential memory-hard functions,” 2009, http://www.tarsnap.
com/scrypt/scrypt.pdf.

[17] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get off of my cloud: exploring information
leakage in third-party compute clouds,” in ACM CCS’09, 2009, pp. 199–212.

[18] M. Robshaw and O. Billet, New stream cipher designs: the eSTREAM finalists. Springer, 2008, vol. 4986.

[19] C. D. Thompson, “Area-time complexity for VLSI,” in STOC’79. ACM, 1979, pp. 81–88.

A Permutation P
Permutation P is based on the round function of Blake2b and works as follows. Its 8 16-byte inputs S0, S1, . . . , S7

are viewed as a 4× 4-matrix of 64-bit words, where Si = (v2i+1||v2i):
v0 v1 v2 v3

v4 v5 v6 v7

v8 v9 v10 v11

v12 v13 v14 v15

Then we do

G(v0, v4, v8, v12) G(v1, v5, v9, v13)

G(v2, v6, v10, v14) G(v3, v7, v11, v15)

G(v0, v5, v10, v15) G(v1, v6, v11, v12)

G(v2, v7, v8, v13) G(v3, v4, v9, v14),

18

https://github.com/mbroz/PHCtest/blob/master/output/phc_round2.pdf
https://github.com/mbroz/PHCtest/blob/master/output/phc_round2.pdf
http://eprint.iacr.org/
http://eprint.iacr.org/2013/525/20140105:194859
http://eprint.iacr.org/2013/525/20140105:194859
http://eprint.iacr.org/
https://bitcointalk.org/index.php?topic=47417.0
https://litecoin.org/
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
http://www.tarsnap.com/scrypt/scrypt.pdf
http://www.tarsnap.com/scrypt/scrypt.pdf

where G applies to (a, b, c, d) as follows:

a← a+ b+ 2 ∗ aL ∗ bL;

d← (d⊕ a) ≫ 32;

c← c+ d+ 2 ∗ cL ∗ dL;

b← (b⊕ c) ≫ 24;

a← a+ b+ 2 ∗ aL ∗ bL;

d← (d⊕ a) ≫ 16;

c← c+ d+ 2 ∗ cL ∗ dL;

b← (b⊕ c) ≫ 63;

(3)

Here + are additions modulo 264 and ≫ are 64-bit rotations to the right. xL is the 64-bit integer x truncated
to the 32 least significant bits. The modular additions in G are combined with 64-bit multiplications (that is
the only difference to the original Blake2 design).

Our motivation in adding multiplications is to increase the circuit depth (and thus the running time) of
a potential ASIC implementation while having roughly the same running time on CPU thanks to parallelism
and pipelining. Extra multiplications in the scheme serve well, as the best addition-based circuits for multi-
plication have latency about 4-5 times the addition latency for 32-bit multiplication (or roughly logn for n-bit
multiplication).

As a result, any output 64-bit word of P is implemented by a chain of additions, multiplications, XORs, and
rotations. The shortest possible chain for the 1 KB-block (e.g, from v0 to v0) consists of 12 MULs, 12 XORs,
and 12 rotations.

B Additional functionality

The following functionality is enabled in the extended implementation2 but is not officially included in the PHC
release3:

• Hybrid construction Argon2id, which has type y = 2 (used in the pre-hashing and address generation).
In the first two slices of the first pass it generates reference addresses data-independently as in Argon2i,
whereas in later slices and next passes it generates them data-dependently as in Argon2d.

• Sbox-hardened version Argon2ds, which has type y = 4. In this version the compression function G
includes the 64-bit transformation T , which is a chain of S-boxes, multiplications, and additions. In terms
of Section 3.4, we additionally compute

W = LSB64(R0 ⊕R63);

Z0+ = T (W);

Z63+ = T (W)� 32.

The transformation T , on the 64-bit word W is defined as follows:

– Repeat 96 times:

1. y ← S[W [8 : 0]];

2. z ← S[512 +W [40 : 32]];

3. W ← ((W [31 : 0] ◦W [63 : 32]) + y)⊕ z.
– T (W)←W .

All the operations are performed modulo 264. ◦ is the 64-bit multiplication, S[] is the Sbox (lookup table)
that maps 10-bit indices to 64-bit values. W [i : j] is the subset of bits of W from i to j inclusive.

The S-box is generated in the start of every pass in the following procedure. In total we specify 210 · 8
bytes, or 8 KBytes. We take block B[0][0] and apply F (the core of G) to it 16 times. After each two
iterations we use the entire 1024-byte value and initialize 128 lookup values.

The properties of T and its initialization procedure is subject to change.

2https://github.com/khovratovich/Argon2
3https://github.com/P-H-C/phc-winner-argon2

19

https://github.com/khovratovich/Argon2
https://github.com/P-H-C/phc-winner-argon2

C Change log

C.1 v.1.3

• The blocks are XORed with, not overwritten in the second pass and later;

• The version number byte is now 0x13.

C.2 v1.2.1 – February 1st, 2016

• The total number of blocks can reach 232 − 1;

• The reference block index now requires 64 bits; the lane number is computed separately.

• New modes Argon2id and Argon2ds are added as optional.

The specification of v1.2.1 released on 26th August, 2015, had incorrect description of the first block generation.
The version released on 2d September, 2015, had incorrect description of the counter used in generating addresses
for Argon2i. The version released on September 8th, 2015, lacked the ”Recommended parameters” section. The
version released on October 1st, 2015, had the maximal parallelism level of 255 lanes. The version released on
November 3d, 2015, had a typo. The versions released on November 5th and December 26th, had incorrect
description of the first block generation and the variable-length hash function.

C.3 v1.2 – 21th June, 2015

Non-uniform indexing rule, the compression function gets multiplications.

C.4 v1.1 – 6th February, 2015

• New indexing rule added to avoid collision with a proof.

• New rule to generate first two blocks in each lane.

• Non-zero constant added to the input block used to generate addresses in Argon2i.

20

	Introduction
	Definitions
	Motivation
	Model for memory-hard functions

	Specification of Argon2
	Inputs
	Operation
	Indexing
	Compression function G

	Features
	Available features
	Possible future extensions

	Security analysis
	Ranking tradeoff attack
	Memory optimization attack
	Attack on iterative compression function
	Security of Argon2 to generic attacks
	Security of Argon2 to ranking tradeoff attacks
	Security of Argon2i to generic tradeoff attacks on random graphs
	Summary of tradeoff attacks

	Design rationale
	Indexing function
	Implementing parallelism
	Compression function design
	Overview
	Design criteria

	User-controlled parameters

	Performance
	x86 architecture

	Applications
	Recommended parameters
	Conclusion
	Permutation P
	Additional functionality
	Change log
	v.1.3
	v1.2.1 – February 1st, 2016
	v1.2 – 21th June, 2015
	v1.1 – 6th February, 2015

