

Bash Special Characters
15 Special Characters You Need to Know

Dave McKay

©2019 by LifeSavvy Media. All rights reserved. No part of this book may be
reproduced in any form or by any electronic or mechanical means without
permission in writing from the publisher, except by a reviewer, who may
quote brief passages in a review.

Cover Photo by Malll Themd/Shutterstock

https://www.shutterstock.com/image-photo/unix-bash-shell-green-color-on-222938707?src=iDh8lU-xdNsSysg94XN4jw-1-9

Contents
What Are Special Characters? ... 1

~ Home Directory .. 2

. Current Directory .. 3

.. Parent Directory ... 4

/ Path Directory Separator .. 5

Comment or Trim Strings ... 6

? Single Character Wildcard .. 7

* Character Sequence Wildcard .. 8

[] Character Set Wildcard .. 9

; Shell Command Separator .. 10

& Background Process .. 11

< Input Redirection ... 12

> Output Redirection .. 13

| Pipe ... 14

! Pipeline logical NOT and History Operator ... 14

$ Variable Expressions .. 16

Quoting Special Characters ... 18

© LifeSavvy Media. All rights reserved ® 1 | P a g e

What Are Special Characters?

If you want to master the Bash shell on Linux, macOS, or another
UNIX-like system, special characters (like ~, *, |, and >) are critical.
We'll help you unravel these cryptic Linux command sequences and
become a hero of hieroglyphics.

There are a set of characters the Bash shell treats in two different ways.
When you type them at the shell, they act as instructions or commands
and tell the shell to perform a certain function. Think of them as single-
character commands.

Sometimes, you just want to print a character and don't need it to act as
a magic symbol. There's a way you can use a character to represent
itself rather than its special function.

We'll show you which characters are "special" or "meta-" characters, as
well as how you can use them functionally and literally.

https://www.howtogeek.com/412055/37-important-linux-commands-you-should-know/
http://man7.org/linux/man-pages/man1/bash.1.html

© LifeSavvy Media. All rights reserved ® 2 | P a g e

~ Home Directory

The tilde (~) is shorthand for your home directory. It means you don't
have to type the full path to your home directory in commands.
Wherever you are in the filesystem, you can use this command to go to
your home directory:

cd ~

You can also use this command with relative paths. For example, if
you're somewhere in the file system that's not under your home folder
and want to change to the archive directory in your work directory,
use the tilde to do it:

cd ~/work/archive

© LifeSavvy Media. All rights reserved ® 3 | P a g e

. Current Directory

A period (.) represents the current directory. You see it in directory
listings if you use the -a (all) option with ls.

ls -a

You can also use the period in commands to represent the path to your
current directory. For example, if you want to run a script from the
current directory, you would call it like this:

./script.sh

This tells Bash to look in the current directory for the script.sh file.
This way, it won't search the directories in your path for matching
executable or script.

© LifeSavvy Media. All rights reserved ® 4 | P a g e

.. Parent Directory

The double period or "double dot" (..) represents the parent directory of
your current one. You can use this to move up one level in the directory
tree.

cd ..

You can also use this command with relative paths---for example, if
you want to go up one level in the directory tree, and then enter another
directory at that level.

You can also use this technique to move quickly to a directory at the
same level in the directory tree as your current one. You hop up one
level, and then back down one into a different directory.

cd ../gc_help

© LifeSavvy Media. All rights reserved ® 5 | P a g e

/ Path Directory Separator

You can use a forward-slash (/)---often just called a slash---to separate
the directories in a pathname.

ls ~/work/archive

One forward-slash represents the shortest possible directory path.
Because everything in the Linux directory tree starts at the root
directory, you can use this command to move to the root directory
quickly:

cd /

© LifeSavvy Media. All rights reserved ® 6 | P a g e

Comment or Trim Strings

Most often, you use the hash or number sign (#) to tell the shell what
follows is a comment, and it should not act on it. You can use it in shell
scripts and---less usefully---on the command line.

This will be ignored by the Bash shell

It isn't truly ignored, however, because it's added to your command
history.

You can also use the hash to trim a string variable and remove some
text from the beginning. This command creates a string variable called
this_string.

In this example, we assign the text "Dave Geek!" to the variable.

this_string="Dave Geek!"

This command uses echo to print the words "How-To" to the terminal
window. It retrieves the value stored in the string variable via
a parameter expansion. Because we append the hash and the text
"Dave," it trims off that portion of the string before it's passed to echo.

echo How-To ${this_string#Dave}

This doesn't change the value stored in the string variable; it only
affects what's sent to echo. We can use echo to print the value of the
string variable once more and check this:

echo $this_string

http://man7.org/linux/man-pages/man1/bash.1.html#EXPANSION

© LifeSavvy Media. All rights reserved ® 7 | P a g e

? Single Character Wildcard

Bash shell supports three wildcards, one of which is the question mark
(?). You use wildcards to replace characters in filename templates. A
filename that contains a wildcard forms a template that matches a range
of filenames, rather than just one.

The question mark wildcard represents exactly one character. Consider
the following filename template:

ls badge?.txt

This translates as "list any file with a name that starts with 'badge' and
is followed by any single character before the filename extension."

It matches the following files. Note that some have numbers and some
have letters after the "badge" portion of the filename. The question
mark wildcard will match both letters and numbers.

That filename template doesn't match "badge.txt," though, because the
filename doesn't have a single character between "badge" and the file
extension. The question mark wildcard must match a corresponding
character in the filename.

You can also use the question mark to find all files with a specific
number of characters in the filenames. This lists all text files that
contain exactly five characters in the filename:

ls ?????.txt

© LifeSavvy Media. All rights reserved ® 8 | P a g e

* Character Sequence Wildcard

You can use the asterisk (*) wildcard to stand for any sequence of
characters, including no characters. Consider the following filename
template:

ls badge*

This matches all of the following:

It matches "badge.txt" because the wildcard represents any sequence of
characters or no characters.

This command matches all files called "source," regardless of the file
extension.

ls source.*

© LifeSavvy Media. All rights reserved ® 9 | P a g e

[] Character Set Wildcard

As covered above, you use the question mark to represent any single
character and the asterisk to represent any sequence of characters
(including no characters).

You can form a wildcard with the square brackets ([]) and the
characters they contain. The relevant character in the filename must
then match at least one of the characters in the wildcard character set.

In this example, the command translates to: "any file with a ".png"
extension, a filename beginning with "pipes_0," and in which the next
character is either 2, 4, or 6."

ls badge_0[246].txt

You can use more than one set of brackets per filename template:

ls badge_[01][789].txt

You can also include ranges in the character set. The following
command selects files with the numbers 21 to 25, and 31 to 35 in the
filename.

ls badge_[23][1-5].txt

© LifeSavvy Media. All rights reserved ® 10 | P a g e

; Shell Command Separator

You can type as many commands as you like on the command line, as
long as you separate each of them with a semicolon (;). We'll do this in
the following example:

ls > count.txt; wc -l count.txt; rm count.txt

Note that the second command runs even if the first fails, the third runs
even if the second fails, and so on.

If you want to stop the sequence of execution if one command fails, use
a double ampersand (&&) instead of a semicolon:

cd ./doesntexist && cp ~/Documents/reports/* .

© LifeSavvy Media. All rights reserved ® 11 | P a g e

& Background Process

After you type a command in a terminal window and it completes, you
return to the command prompt. Normally, this only takes a moment or
two. But if you launch another application, such as gedit, you cannot
use your terminal window until you close the application.

You can, however, launch an application as a background process and
continue to use the terminal window. To do this, just add an ampersand
to the command line:

gedit command_address.page &

Bash shows you the process ID of what launched, and then returns you
to the command line. You can then continue to use your terminal
window.

© LifeSavvy Media. All rights reserved ® 12 | P a g e

< Input Redirection

Many Linux commands accept a file as a parameter and take their data
from that file. Most of these commands can also take input from a
stream. To create a stream, you use the left-angle bracket (<), as
shown in the following example, to redirect a file into a command:

sort < words.txt

When a command has input redirected into it, it might behave
differently than when it reads from a named file.

If we use wc to count the words, lines, and characters in a file, it prints
the values, and then the filename. If we redirect the contents of the file
to wc, it prints the same numeric values but doesn't know the name of
the file from which the data came. It cannot print a filename.

Here are some examples of how you can use wc:

wc words.txt
wc < words.txt

© LifeSavvy Media. All rights reserved ® 13 | P a g e

> Output Redirection

You can use the right-angle bracket (>) to redirect the output from a
command (typically, into a file); here's an example:

ls > files.txt
cat files.txt

Output redirection can also redirect error messages if you use a digit (2,
in our example) with >. Here's how to do it:

wc doesntexist.txt 2> errors.txt
cat errors.txt

© LifeSavvy Media. All rights reserved ® 14 | P a g e

| Pipe

A "pipe" chains commands together. It takes the output from one
command and feeds it to the next as input. The number of piped
commands (the length of the chain) is arbitrary.

Here, we'll use cat to feed the contents of the words.txt file into grep,
which extracts any line that contains either a lower- or uppercase "C."
grep will then pass these lines to sort. sort is using the -r (reverse)
option, so the sorted results will appear in reverse order.

We typed the following:

cat words.txt | grep [cC] | sort -r

! Pipeline logical NOT and History Operator

The exclamation point (!) is a logical operator that means NOT.

There are two commands in this command line:

[! -d ./backup] && mkdir ./backup

• The first command is the text within the square brackets;
• The second command is the text that follows the double ampersands

&&.

The first command uses ! as a logical operator. The square brackets
indicate a test is going to be made. The -d (directory) option tests for
the presence of a directory called backup. The second command creates
the directory.

Because double ampersands separate the two commands, Bash will
only execute the second if the first succeeds. However, that's the
opposite of what we need. If the test for the "backup" directory
succeeds, we don't need to create it. And if the test for the "backup
"directory fails, the second command won't be executed, and the
missing directory won't be created.

© LifeSavvy Media. All rights reserved ® 15 | P a g e

This is where the logical operator ! comes in. It acts as a logical NOT.
So, if the test succeeds (i.e., the directory exists), the ! flips that to
"NOT success," which is failure. So, the second command
isn't activated.

If the directory test fails (i.e., the directory doesn't exist), the ! changes
the response to "NOT failure," which is success. So, the command to
create the missing directory is executed.

That little ! packs a lot of punch when you need it to!

To check the status of the backup folder, you use the ls command and
the -l (long listing) and -d (directory) options, as shown below:

ls -l -d backup

You can also run commands from your command history with the
exclamation point. The history command lists your command history,
and you then type the number of the command you wish to re-run with
! to execute it, as shown below:

!24

The following re-runs the previous command:

!!

© LifeSavvy Media. All rights reserved ® 16 | P a g e

$ Variable Expressions

In the Bash shell, you create variables to hold values. Some, like
environment variables, always exist, and you can access them any time
you open a terminal window. These hold values, such as your
username, home directory, and path.

You can use echo to see the value a variable holds---just precede the
variable name with the dollar sign ($), as shown below:

echo $USER
echo $HOME
echo $PATH

To create a variable, you must give it a name and provide a value for it
to hold. You do not have to use the dollar sign to create a variable. You
only add $ when you reference a variable, such as in the following
example:

ThisDistro=Ubuntu
MyNumber=2001
echo $ThisDistro
echo $MyNumber

Add braces ({}) around the dollar sign and perform a parameter
expansion to obtain the value of the variable and allow further
transformations of the value.

This creates a variable that holds a string of characters, as shown
below:

MyString=123456qwerty

http://man7.org/linux/man-pages/man7/environ.7.html

© LifeSavvy Media. All rights reserved ® 17 | P a g e

Use the following command to echo the string to the terminal window:

echo ${MyString}

To return the substring starting at position 6 of the whole string, use the
following command (there's a zero-offset, so the first position is zero):

echo ${myString:6}

If you want to echo a substring that starts at position zero and contains
the next six characters, use the following command:

echo ${myString:0:6}

Use the following command to echo a substring that starts at position
four and contains the next four characters:

echo ${myString:4:4}

© LifeSavvy Media. All rights reserved ® 18 | P a g e

Quoting Special Characters

If you want to use a special character as a literal (non-special)
character, you have to tell the Bash shell. This is called quoting, and
there are three ways to do it.

If you enclose the text in quotation marks ("..."), this prevents Bash
from acting on most of the special characters, and they just print. One
notable exception, though, is the dollar sign ($). It still functions as the
character for variable expressions, so you can include the values from
variables in your output.

For example, this command prints the date and time:

echo "Today is $(date)"

If you enclose the text in single quotes ('...') as shown below, it stops
the function of all the special characters:

echo 'Today is $(date)'

You can use a backslash (\) to prevent the following character from
functioning as a special character. This is called "escaping" the
character; see the example below:

echo "Today is \$(date)"

Just think of special characters as very short commands. If you
memorize their uses, it can benefit your understanding of the Bash
shell---and other people's scripts---immensely.

	What Are Special Characters?
	~ Home Directory
	. Current Directory
	.. Parent Directory
	/ Path Directory Separator
	# Comment or Trim Strings
	? Single Character Wildcard
	* Character Sequence Wildcard
	[] Character Set Wildcard
	; Shell Command Separator
	& Background Process
	< Input Redirection
	> Output Redirection
	| Pipe
	! Pipeline logical NOT and History Operator
	$ Variable Expressions
	Quoting Special Characters

